Mobile Osmoseanlage DSD 1000
TOP
Immer sauberes Trinkwasser
Jederzeit und überall schadstofffreies Trinkwasser geniessen. Kein Wasseranschluss erforderlich und in nur 5 Minuten Einsatzbereit egal wo Sie sind!
Mit der Anschaffung der, Auftisch-Osmoseanlage DSD 1000 sparen Sie auf Dauer nicht nur bares Geld, sondern fördern auch Ihre Gesundheit, schonen die Umwelt, auch das lästige Kistenschleppen gehört der Vergangenheit an. Schadstofffreies Trinkwasser ist die Voraussetzung für Vitalität und Lebenskraft. Die positive Veränderung des Geschmackes von Ihrem Leitungswasser bemerken Sie bereits beim ersten Schluck.
Die Auftisch-Osmoseanlage DSD 1000 macht Ihr Leitungswasser rein und geschmackvoll. Durch das natürliche Filtersystem wird Ihr Leitungswasser von gesundheitsschädlichen Stoffen und Rückständen befreit. So geniessen Sie reines sauberes Trinkwasser in seiner ursprünglichsten Form, kristallklar wie vom Gletscher der Natur. Die Auftisch-Osmoseanlage DSD 1000 entfernt nahezu vollständig alle Schadstoffe wie: Kalk, Bakterien, Viren, Nitrat, Nitrit, Pestizide, Uran, Chrom Aluminium, Ammoniak, Cyanid, Cadmium, Mangan, Kupfer, Nickel, Blei, Strontium, Medikamentenrückstände usw.
Filtersystem |
Ausführlich informiert |
Einfache Bedienung |
High Tech RO Membrane 4-Stufen-Filtersystem mit Keimsperre 5 Liter Wassertank 1,5 Liter Bereitschaftstank Kein Werkzeug erforderlich ARS Rückgewinnungssystem VSR Vorspülfunktion VSN Nachspülfunktion |
Anzeige Wassertemperatur Anzeige Filterrestlaufzeit Anzeige wenn Filterwechsel notwendig Anzeige Betriebszustand Spülmodus Anzeige Betriebszustand Nachspülmodus Anzeige wenn Wasserwechsel notwendig TDS Sensor Überwachung Wasser Eingang TDS Sensor Überwachung Reinwasser |
Multi-Touch-Funktion heißes Wasser in nur 3 Sekunden 5 Temperaturstufen vorprogrammiert Energiesparmodus Kindersicherung Filterwechsel in nur 10 Sekunden elektronische Filterrückstellung Abschaltautomatik bei Fehlfunktion |
Kochend heisses Trinkwasser in nur 3 Sekunden
Durch das brandneue KDS-HD Heizmodul erhalten Sie kochend heisses, schadstofffreies Trinkwasser in nur 3 Sekunden. Durch diese Neuentwicklung entstehen Ihnen minimale Energiekosten, da Sie nur Strom verbrauchen, wenn Sie auch heisses Wasser benötigen. 4 verschiedene Temperaturstufen bereits vorprogrammiert und per Touch-Funktion abrufbar:
Option 1: normales Wasser
Option 2: 45° C warmes Wasser
Option 3: 55° C heisses Wasser
Option 4: 85° C kochendes Wasser
Option 5: 100° C max Temperatur Wasser
Spannung: | 220 -240 Volt |
Frequenz: | 50 - 60 Hz |
Maximale Leistungsaufnahme (nur bei der Aufheizzeit) | 2200 Watt |
Standby Verbrauch: | 0,1 kW.h/24 h |
Filterstufen inkl. RO Membrane: | 4 Stufen |
Maximale Filterleistung: | 280 ml/min |
Filterleistung RO Membrane: | 285 Liter/24 H |
RGSS Retrograde Secure System®- Keimsperre | ja |
TDS Sensor Überwachung Wassereingang | ja |
TDS Sensor Überwachung Wasserausgang | ja |
KDS HD Keramik Heizmodul | ja |
ARS Abwasser Rückgewinnungssystem | ja |
VSR Vorspülfunktion | ja |
VSN Nachspülfunktion | ja |
Maximale Zapfleistung: | 1000 ml/min |
Frischwassertank: | 5 Liter |
Puffertank: | 1,5 Liter |
Einsatz Temperatur: | 4-40°C |
Maximale Betriebsfeuchte: | max.90% |
Wasser Eingangstemperatur: | 5-38°C |
Schutzklasse gegen Elektroschlag: | Klasse 1 |
IP Schutzklasse: | IPXO |
Zertifizierung: | CE |
Wechselintervall RO Membrane: | Ø 24-36 Monate, (abhängig jedoch vom Verschmutzungsgrad Wasser Eingang) |
Wechselintervall PP & CTO Filter: | Ø 9-12 Monate, (abhängig jedoch vom Verschmutzungsgrad Wasser Eingang) |
Gerätebreite: | 185 mm |
Gerätetiefe: | 450 mm |
Gerätehöhe: | 460 mm |
Maximale Auslaufhöhe: | 260 mm (mit entfernter Tropftasse), 230 mm (mit Tropftasse) |
Das 5-Stufen-Filtersystem der DSD 1000
Das Filtersystem der Auftisch Osmoseanlage - Wasserbar DSD 1000 arbeitet nach dem Prinzip der Umkehrosmose. Die Technik der Umkehrosmose kommt ursprünglich aus den USA und wurde im Auftrag der NASA für ein Trinkwasser-Recycling-System bei Weltraumflügen entwickelt.
Diese Technik wird heute in jeder Osmoseanlage mit der Bezeichnung RO Membrane, auch das "Herzstück einer Osmoseanlage" genannt, eingesetzt. Hinsichtlich Filterwirkung ist dieses natürliche Filterverfahren ohne Chemie die derzeit beste Möglichkeit, Wasser von Schadstoffen zu befreien.
Neben der RO Membrane Filterstufe der DSD 1000 gibt es noch weitere 3 Filterstufen. Diese Filter sind "Vorarbeiter" für die RO Membrane, entfernen unerwünschte Gerüche und grobe Verunreinigungen aus dem Wasser und schonen somit das "Herzstück" die RO Membrane.
Diese Technik wird heute in jeder Osmoseanlage mit der Bezeichnung RO Membrane, auch das "Herzstück einer Osmoseanlage" genannt, eingesetzt. Hinsichtlich Filterwirkung ist dieses natürliche Filterverfahren ohne Chemie die derzeit beste Möglichkeit, Wasser von Schadstoffen zu befreien.
Neben der RO Membrane Filterstufe der DSD 1000 gibt es noch weitere 3 Filterstufen. Diese Filter sind "Vorarbeiter" für die RO Membrane, entfernen unerwünschte Gerüche und grobe Verunreinigungen aus dem Wasser und schonen somit das "Herzstück" die RO Membrane.
Grundlegende Funktion der Umkehrosmose - RO Membrane
Die Technik der Umkehrosmose ist mit einer extrem feinen Filtration vergleichbar und wird daher auch als Hyperfiltration bezeichnet. Bei diesem Verfahren wird die Umkehrung eines Prozesses genutzt, der in der Natur elementare Bedeutung hat. Osmose bezeichnet den Prozess des Konzentrationsausgleichs zweier Flüssigkeiten durch eine halbdurchlässige Membran. Dieser Vorgang tritt immer auf, wenn zwei wässrige Lösungen mit unterschiedlicher Ionen-Konzentration durch eine semipermeable (halbdurchlässige) Wand getrennt sind.
Bei der Umkehrosmose wird Wasser gegen eine synthetische semipermeable Membran mit einer Porengröße von 0,0001mµ gepresst, die nur für Wassermoleküle durchlässig ist, da Wassermoleküle ebenfalls nur 0,0001 mµ groß sind.Die unerwünschten Stoffe im Wasser, z.B. Härtebildner, Salze, Kalk, Nitrat, Rückstände von Pestiziden, Hormonen und Medikamenten, Mikroorganismen, um nur einige zu nennen, sind alle größer als das Wassermolekül und können aufgrund ihrer molekularen Größe nicht durch die ultrafeine Membran gelangen.
Auf der anderen Seite der RO Membran, der Reinwasserseite, befindet sich somit schadstofffreies Trinkwasser. Da während des Betriebs ständig Leitungswasser mit den darin enthaltenen Substanzen nachfließt, müssen die von der Membran zurückgehaltenen Stoffe laufend abgeführt werden, damit ein Verstopfen der Membran verhindert wird. Eine Umkehrosmoseanlage produziert infolgedessen neben dem Reinwasser auch Abwasser, das die unerwünschten Substanzen in erhöhter Konzentration enthält und die weggespült werden müssen.
Der Konzentrationsausgleich wird erreicht, indem das Lösungsmittel Wasser durch die Wand auf die Seite der höheren Ionen-Konzentration wechselt und somit die dortige Lösung verdünnt. In der Natur ist das Osmose-Prinzip von größter physiologischer Bedeutung, wenn durch die semipermeablen Membranen nur das Lösungsmittel, nicht aber die gelösten Substanzen durchgelassen werden. Denn damit kann zum einen der Wasserhaushalt der Zellen reguliert und zum anderen ein Innendruck (Turgor, osmotischer Druck) zur Stabilität aufrecht gehalten werden.
Physikalisch gesehen sind die Ionen-Lösungen - die voneinander durch Membranen getrennt sind - immer bestrebt, einen Konzentrationsausgleich zu erlangen. Das bedeutet, dass Ionen von der hochkonzentrierten Seite auf die Seite der niedrigeren Konzentration gelangen wollen.
Da die Membran eine Barriere darstellt, die die Ionen aufgrund ihrer molekularen Größe nicht ohne weiteres durchwandern können, strömen stattdessen die kleineren Wassermoleküle von der niedrig konzentrierten Seite auf die höher konzentrierte. Dabei fließen die Wassermoleküle so lange, bis entweder die Ionen-Konzentrationen der beiden Seiten ausgeglichen sind oder ein Druck auf der hochkonzentrierten Seite aufgebaut wird - der so genannte osmotische Druck.Dabei gehorcht der osmotische Druck einer stark verdünnten Lösung den Gesetzen, die für ideale Gase gelten. Er steigt proportional zur Konzentration der Lösung an und nimmt proportional zur Temperatur zu.
Osmose-Prozesse sind uns allen schon einmal begegnet, wenn wir nach einem Regenschauer reife Kirschen ernten und feststellen, dass sie eingerissene oder vernarbte Stellen bekommen haben. Dies liegt daran, dass die Kirschhaut die Funktion einer semipermeablen Membran übernimmt. Auf der Innenseite dieser Membran befindet sich der Kirschsaft mit einer hohen Ionen-Konzentration in Form von Zucker, außen hängen die Regentropfen, die als ideales Lösungsmittel fungieren.
Da die Zuckermoleküle aufgrund ihrer Größe nicht durch die Membran nach außen wandern können fließen stattdessen die Wassermoleküle ins Innere der Kirsche. Eine reife Kirsche kann jedoch ihr Volumen nicht wesentlich vergrößern, um das zusätzliche Wasser aufzunehmen. Folglich steigt der Innendruck der Kirsche so weit an, bis die Kirschhaut schließlich einreißt.
Bei der Umkehrosmosetechnik wird das zuvor beschriebene Osmose-Prinzip umgekehrt. Auf der Seite mit den hohen Ionen-Konzentrationen (Leitungswasser, Rohwasser) wird ein Druck angelegt (Wasserleitungsdruck), der das Wasser in die andere Richtung zwingt, nämlich auf die Reinwasserseite mit der niedrigeren Konzentration.
Die unerwünschten gelösten Stoffe (z.B. Härtebildner, Nitrat, Kieselsäure, Rückstände von Pestiziden und Medikamenten, um nur einige zu nennen) können aufgrund ihrer molekularen Größe nicht durch die ultrafeine Membran gelangen - auf der Reinwasserseite ist somit fast ausschließlich Wasser und keine Ionen.
Da während des Betriebs ständig Leitungswasser mit den darin enthaltenen Substanzen nachfließt, müssen die von der Membran zurückgehaltenen Stoffe laufend abgeführt werden, damit ein Verstopfen der Membran verhindert wird. Eine Umkehrosmoseanlage produziert infolgedessen neben dem Reinwasser auch Abwasser (Konzentrat), das die unerwünschten Substanzen in erhöhter Konzentration enthält und die weggespült werden. Hierbei wird sogleich einer der gravierenden Unterschiede der Umkehrosmosetechnik zu Techniken mit Akkumulationsfiltern deutlich.
Der Wirkungsgrad (Menge des filtrierten Wassers pro Menge Rohwasser aus der Leitung) ist zwar nie Eins, da stets "Abwasser" entsteht. Das mit Schadstoffen angereicherte Abwasser wird aber stets abgeführt, so dass es nie zur Akkumulation von zurückgehaltenen Schadstoffen an der Osmosemembran kommen kann.
Entwickelt wurde die Technik in den 60er Jahren im Auftrag der NASA, die ein Trinkwasser-Recycling-System für bemannte Weltraumflüge benötigte. Bis heute kommen alle Membranen aus den USA. Das bedeutendste Anwendungsgebiet ist heutzutage die großtechnische Meerwasserentsalzung. Weitere Einsatzbereiche sind Lebensmittelindustrie (Aufkonzentrieren von Fruchtsäften), Medizin (Dialyse), Abwasser-Recycling (z.B. in galvanischen Betrieben). In den USA haben Umkehrosmose-Anlagen schon längst Einzug in die Haushalte gehalten. Die Anlagen gelten mittlerweile zum Standard einer gut ausgestatten Küche.
Die DSD 1000 verwendet die originale amerikanische DOW FILMTEC Membrane und Akkumulationsfilter als Vorfilter. So helfen Feinfilter als Schutz vor Schwebstoffen und anschließende Aktivkohlefilter verringern den Chlorgehalt, um die hochwertige Osmosemembran zu schützen. Durch integrierte VSR (Vorspülfunktion) und VSN (Rückspülfunktion) wird nicht nur eine Rückverkeimung verhindert, sondern es verlängert die Lebensdauer der Umkehrosmosemembran erheblich.
Bei der Umkehrosmose wird Wasser gegen eine synthetische semipermeable Membran mit einer Porengröße von 0,0001mµ gepresst, die nur für Wassermoleküle durchlässig ist, da Wassermoleküle ebenfalls nur 0,0001 mµ groß sind.Die unerwünschten Stoffe im Wasser, z.B. Härtebildner, Salze, Kalk, Nitrat, Rückstände von Pestiziden, Hormonen und Medikamenten, Mikroorganismen, um nur einige zu nennen, sind alle größer als das Wassermolekül und können aufgrund ihrer molekularen Größe nicht durch die ultrafeine Membran gelangen.
Auf der anderen Seite der RO Membran, der Reinwasserseite, befindet sich somit schadstofffreies Trinkwasser. Da während des Betriebs ständig Leitungswasser mit den darin enthaltenen Substanzen nachfließt, müssen die von der Membran zurückgehaltenen Stoffe laufend abgeführt werden, damit ein Verstopfen der Membran verhindert wird. Eine Umkehrosmoseanlage produziert infolgedessen neben dem Reinwasser auch Abwasser, das die unerwünschten Substanzen in erhöhter Konzentration enthält und die weggespült werden müssen.
Der Konzentrationsausgleich wird erreicht, indem das Lösungsmittel Wasser durch die Wand auf die Seite der höheren Ionen-Konzentration wechselt und somit die dortige Lösung verdünnt. In der Natur ist das Osmose-Prinzip von größter physiologischer Bedeutung, wenn durch die semipermeablen Membranen nur das Lösungsmittel, nicht aber die gelösten Substanzen durchgelassen werden. Denn damit kann zum einen der Wasserhaushalt der Zellen reguliert und zum anderen ein Innendruck (Turgor, osmotischer Druck) zur Stabilität aufrecht gehalten werden.
Physikalisch gesehen sind die Ionen-Lösungen - die voneinander durch Membranen getrennt sind - immer bestrebt, einen Konzentrationsausgleich zu erlangen. Das bedeutet, dass Ionen von der hochkonzentrierten Seite auf die Seite der niedrigeren Konzentration gelangen wollen.
Da die Membran eine Barriere darstellt, die die Ionen aufgrund ihrer molekularen Größe nicht ohne weiteres durchwandern können, strömen stattdessen die kleineren Wassermoleküle von der niedrig konzentrierten Seite auf die höher konzentrierte. Dabei fließen die Wassermoleküle so lange, bis entweder die Ionen-Konzentrationen der beiden Seiten ausgeglichen sind oder ein Druck auf der hochkonzentrierten Seite aufgebaut wird - der so genannte osmotische Druck.Dabei gehorcht der osmotische Druck einer stark verdünnten Lösung den Gesetzen, die für ideale Gase gelten. Er steigt proportional zur Konzentration der Lösung an und nimmt proportional zur Temperatur zu.
Osmose-Prozesse sind uns allen schon einmal begegnet, wenn wir nach einem Regenschauer reife Kirschen ernten und feststellen, dass sie eingerissene oder vernarbte Stellen bekommen haben. Dies liegt daran, dass die Kirschhaut die Funktion einer semipermeablen Membran übernimmt. Auf der Innenseite dieser Membran befindet sich der Kirschsaft mit einer hohen Ionen-Konzentration in Form von Zucker, außen hängen die Regentropfen, die als ideales Lösungsmittel fungieren.
Da die Zuckermoleküle aufgrund ihrer Größe nicht durch die Membran nach außen wandern können fließen stattdessen die Wassermoleküle ins Innere der Kirsche. Eine reife Kirsche kann jedoch ihr Volumen nicht wesentlich vergrößern, um das zusätzliche Wasser aufzunehmen. Folglich steigt der Innendruck der Kirsche so weit an, bis die Kirschhaut schließlich einreißt.
Bei der Umkehrosmosetechnik wird das zuvor beschriebene Osmose-Prinzip umgekehrt. Auf der Seite mit den hohen Ionen-Konzentrationen (Leitungswasser, Rohwasser) wird ein Druck angelegt (Wasserleitungsdruck), der das Wasser in die andere Richtung zwingt, nämlich auf die Reinwasserseite mit der niedrigeren Konzentration.
Die unerwünschten gelösten Stoffe (z.B. Härtebildner, Nitrat, Kieselsäure, Rückstände von Pestiziden und Medikamenten, um nur einige zu nennen) können aufgrund ihrer molekularen Größe nicht durch die ultrafeine Membran gelangen - auf der Reinwasserseite ist somit fast ausschließlich Wasser und keine Ionen.
Da während des Betriebs ständig Leitungswasser mit den darin enthaltenen Substanzen nachfließt, müssen die von der Membran zurückgehaltenen Stoffe laufend abgeführt werden, damit ein Verstopfen der Membran verhindert wird. Eine Umkehrosmoseanlage produziert infolgedessen neben dem Reinwasser auch Abwasser (Konzentrat), das die unerwünschten Substanzen in erhöhter Konzentration enthält und die weggespült werden. Hierbei wird sogleich einer der gravierenden Unterschiede der Umkehrosmosetechnik zu Techniken mit Akkumulationsfiltern deutlich.
Der Wirkungsgrad (Menge des filtrierten Wassers pro Menge Rohwasser aus der Leitung) ist zwar nie Eins, da stets "Abwasser" entsteht. Das mit Schadstoffen angereicherte Abwasser wird aber stets abgeführt, so dass es nie zur Akkumulation von zurückgehaltenen Schadstoffen an der Osmosemembran kommen kann.
Entwickelt wurde die Technik in den 60er Jahren im Auftrag der NASA, die ein Trinkwasser-Recycling-System für bemannte Weltraumflüge benötigte. Bis heute kommen alle Membranen aus den USA. Das bedeutendste Anwendungsgebiet ist heutzutage die großtechnische Meerwasserentsalzung. Weitere Einsatzbereiche sind Lebensmittelindustrie (Aufkonzentrieren von Fruchtsäften), Medizin (Dialyse), Abwasser-Recycling (z.B. in galvanischen Betrieben). In den USA haben Umkehrosmose-Anlagen schon längst Einzug in die Haushalte gehalten. Die Anlagen gelten mittlerweile zum Standard einer gut ausgestatten Küche.
Die DSD 1000 verwendet die originale amerikanische DOW FILMTEC Membrane und Akkumulationsfilter als Vorfilter. So helfen Feinfilter als Schutz vor Schwebstoffen und anschließende Aktivkohlefilter verringern den Chlorgehalt, um die hochwertige Osmosemembran zu schützen. Durch integrierte VSR (Vorspülfunktion) und VSN (Rückspülfunktion) wird nicht nur eine Rückverkeimung verhindert, sondern es verlängert die Lebensdauer der Umkehrosmosemembran erheblich.
Kundenrezensionen
Leider sind noch keine Bewertungen vorhanden. Seien Sie der Erste, der das Produkt bewertet.
Sie müssen angemeldet sein um eine Bewertung abgeben zu können. Anmelden